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ABSTRACT

This report advances work in two areas relevart to logic design in an
MSI/LSI technology. First, the theory of universal functions is advanced
to the full generality of finite matnematical structurss. A universal
funetion is a function which, by appropriate parametrization of a fixed
subset of variaties, becomes an arbitrary preselected function of its
remaining variables. A sequence of theorems are proven waich establishes
the character, interrelationship and means of synthesis of universal func-
tions for all finite mathematical structures, including all possible sett-
ings for logic design, culminating in the characterization of umiversal
fanetions as the universal elements of an sppropriately defined fumctor
butween two categories. Second, the theory of Galois logic design is
enhenced in varioua ways. Various Galois lattice-like operations are
aafined and compared. Next, methods of converting Gelois multiplication
gates to binary addition gates and to Galoils linear gates are described.
Finally, techniques are offered utilizing the Gelois linear module to
reduce hardware at the cost of switching speed.
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This report advances work in two areas relevant to logic design in an MSI/1.SI
technology. First, the theory of universal functions is advanced to the full gen-
erality of finite mathematical structures.. & universel furction is a function
which, by appropriaste parametrization of a fixed subset of variables, becomes au
arbitrary preselected function of its remaining varialldes. A sequence of theorems
is proven which establishes the character, interrelationship and means of synthe-
sis of universal functions for all finite wathematical structures, including all
vossible settings for logic design, culminating in tne characterization of univer-
sal functions as the universal elements of an appropriately defined functor hetween E
two categories. Second, the theory of Galois logic design is enhanced in various ]
ways. Various Galois lettice-like operations are defined and compared. Next,
methods of converting Galois multiplication gates to Linary addition gutes and to
Galois linear gates are deacribed. Finally, - echniques are offered utdilieing the
Galois linear module to reduce hardware at the cost of switching speed.
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SECTION I

INTRODUCTION

VAKIEY  ovmmpmmyros s R A N

Both universal function theory and the Galois approach to logic design

are attempts:to escape a paradox created by the rapid advances in elec~ %
tronic packaging ¢f recent years. The advent of medium—to—large scale in- §
tegration has reduced the cost of individual eleztronic componeats (e.g.,
diodes, transisicrs and resistors) to the vanishing point while ct the same :

time greatly incraasing the ~irst-time cost of producing a new logic block

mo b
i pebatip DL

le.g., MSI/LSI chip types). The traditional approach tc speciml circuit

design was oriented to minimizing diode/transistor-counts, but this is

A : counterproductive in & technology in whick the value such sevings is
i negligible and forces one to design an entirely new, uniterative, special-

;, » purpose logic block.
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The idea of creating logic blocks capable of generating arbitrary
fuuctions of a fixed set of variables attacks the problem of multiplying new
logic module types by enabling a single logic block to serve in a greet

variety of capacities. The universal modules of [1] and [2], for exemple,
and recent read only memories (ROMs) offer the extreme of this sort of 3
capability. The theory of such modules, initially developed in [3] and
extended in [4], now appears in full generality in Section Two.

The paradox above suggests that traditional optimization methodology
_minimizes the wroug things in view of new technclogy. To be effective,
network simplification and reduction must take place subject to the con-
straint that the existing set of tasic logic hlocks- -the MSI/LSI chip
types—need not be increased. This is the major goal and advaﬁtage of
Galois lougic design. Instead of the trajitional Boolean operations like
AND, OR, NOT, NAND, etc., representing a few transistors and diodes, the
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Galois approach utilizes operations like Galois multiplication and the
Galois linear functior which represent whole MSI/LSI chips. Algebraic
reduction in Galois logic design thus reduces chip count withcut affecting
chip design with the same effect as algebraic reduction in Boclean logic
design, which reduces diode-transistor count without affecting the in-
ternal design of the individual Boolean gate.

A year ago research descrived in [_.] offered a methodology for in-
ternal optimization of individual Galois gate and also discussed =
variety of asrproaches to gererating universal Galois modules. The Galois
primitives most seriously considered theore are Galois addition, Galois
multiplication and the Galois linear funciion. Section Three of this
report investigates several operations on a Galois field which act in a
manner similar to the Boolean AND-OR-ROT primitives.

Section Four discusses two special methods of Galois netwcrk design.
The first is & special technique for cnhancing a standard Galois multi-
plication gate to perform ordinary binary addition. The second system-
aticully converts a standard Galois multiplication gate to a Galois
linear module in an cptimal way.

Section Five utilizes trade-offs between switching speed and hard-
ware to design and uses generalized linear modules. The sixth and final
section recormends detailed investigation and developmert of global net-
work reduction algorithms as the next and final major step in meking
Galois theory a pre-~iical approach to logic design.

1.1. Basic Concepts of Finite Field Theory.

The simplest field of all is the two-element Boolean algebra {0, 1}
under the Bcolean operations of EXCLUSIVE OR and AND. The following is
a formal definition of a field and the bchavior of the fieléd operaticns
of addition, multiplication and inversion.

A field is & set S of elements and a pair ¢f two-place operations +
and + with the fcllowing properties:

i. closure: for all xand y in S, (x + y) and (xy) are in S;

ii. associativity: for &ll x, y and 2z in S,
'x+y)+z=x+(y+ 2z), and (xy)z = x(yzj;

H
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%
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i1i., commutativity: for all x and y in S,
x+y=y+x, and xy = yx;
iv. distributivicvy: for all x, y and z in §,
_ x(y + 2) = x3 + xz;
E v. .dentitiss: there exist an additive identity, zero, and a
multiplicative identity, one, in S such that, fer all x in S,
x+ 0= x, and x-1 = x;
vi. inverses: for each x in S, there exists a unique element y
in S such that
X+y=0,
and, for each nonzero x in £, there exists a unique element
y in S such that
xy = 1.
A galois field is a field with a finite number of e ements.

The crder of a finite field is the number of members it has. If p is

-

3 & prire and n is any positive integer, there is a Galois field of order

pn. Any two Galois fields of the same order are isomorphic, so for prac-

tical purposes there is just one Galois field with pn elements, Thie

ield is designated by CF(p"). Of primary concern will be with fields
kaving 2% eiements. It is therefore convenient to let Gp represent
GF(2") and call n the power of the field. Define n" as 2" - 1.

Fpora At

PO IA N

Because Galois fields are fields, all the usual operations of ele-

mentary algebra carried out in the usuval ways give correct results.
Moreover their finiteness permits further, very useful simplification.
3 In fields Gn every element is its own additive inverse; that is,
E x+ x=0. (l“l) N

This car be viewed as a generalizaticn of the EXCLUSIVE OR operation in .

the two-element Boolean algebra G he a result, in such fields the ex- .

1
pression (x + y)2 can be rewritten x> + Xy + xy + y2, whence

(x . y}z = x° + yz. (1-2)
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For each x ir Gn’ it is clear thet the sequence (x, 12, 3 s eee) must
eventually tegin to repeat, since Gn has only 2" distinct elements. The
order of an element x in Gn is the number of terms in the sequence
2, .++) before it begins to repeat. Every field G has elements of
order n*. These elements are called generators of the field. Zero is

(x, x

the only element omitted from the sequence of powers cf a generator. Let
G; be the set of nonzero members of G . Evexy element of G; can be given
a Jogarithmic representation as a unique power less than 20 of a gener-
ator. The order of an element of Gn ie always a divisor of n*, the number
of members of G_. From this it can be deternined that the 2°th member of
the sequence generated ty any element x of Gn must be x itself. Thus,

x =x,

from which it follows that, if x is nonzero,

xn*

I}

1, and

Y

E There is & second method or characterizing elements of Gn' There
' exist n elements Wgs eres W 79 called a basis for Gn’ such that every
element of Gn can be expressed in the form

T
oo

i A
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] where eack x,, i =0, ..., n - 1, i3 zero or che. Yrom this point of
view, Gn is an n-dimensional vector space. Thus, relative to a fixed

basis (wys ««-» wn—l) » each element x of G, has a unique cocrdipate

> ?: representation (xo, ceey xn_l). By the ordinary operations of slgebra,
‘3 (g + ++- * Xy qup ) + (gog + +ov + Yy qopy) =
1 (xo @YO)NO + .0t (xn-l@yn—l)wn-l'




Thus, coordinate representation of the sum is tae termwise mod-two sum of

the coordinate representations.

It would be ideal for Galois logic design if there were a simple and
direct relationship between logaritimic representation of a Galois field

and coordinate representation. Unfortunately, this ideal can be approached

with only varying degrees of success. The substance of much of

[5), dealing with Galois addition and multiplication gate synthesis, is a
search for reasorably compatible logarithmic and coordinate represen-
tations of the same Galois field.

The familiar fields of analysis have an enormously rich variety of
functions which can be defined on them. Every functisr on a Galois field,
however. turns out to be a polynomial of degree less than the number of
elements in the field., For every one-variable function f defined in G,»

there exist elements oGy seey on* in Gn such that

f(x) = oq + ¥qX + ... F orn*xn*,
This fact places an upper bound on the degree of complexity that need be
considered for any logical function to be synthesized. TFurthermore, in
actual Galois synthesis, logic designers need operate only with simple
polynomials which, at worst, behave in a manrer identical to those of
e.ementary algebra.

1.2. Miscellaneous Terminology.

Some famifiarit; with two--valued Boolean algebra is assumed. The
two values are the constants zero and one. The same numerals are used to
represent the additive end multiplicative identities of Galois fields,
tut their context will eliminate any esserntial ambipguity. Other Galois
constants do not have a standardized representation but will be given
representations relative to particular bases or generators.

The primitive operations or primitives of a Boolean algebra or a
Galois fileld are those basic cperations in terms of which ali other func-
tions on the structure can be defined. {In the literature, generators
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of a Galois field are usually called primitives, but this usage is not
followed here.) A formula is a (well-formed) expression consisting of
constante or variables joined by primitive operations. A formula is a
representation of the function indicated by its table of values. 4
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k-variable function is a function with k argumeunts and can be represented
by a formula in k variables. The function obtained by replecing a subset
of its variables wiih constants is a parametrization of the function. A
Boolean translator is a sequence of Foolean functions of the same variables.

Set membership, union, and intersection are indicated in the usual
vty ¢ S, SUT, SN T. A sequence of individuals (so, cves Sk—l) is
symbolized "g", with | 8| defined as the length k of the sequence. Cimi-
larly, a sequence of functions (fo(g) y veey fk_l(a_t)) is written f(x).

Let £ be j-argument function sequence of length k, and let g be k-argument
function sequence of length m. Then g°f is the j-asgument function se-
quence h of length m such that, for azl X,

b (@) = g, (E@), 1=0, ..., 1.

A posgitive integer m underlined represents the set:
n=1{0, 1, ..., m-1}.

A set S written with a positive integral exponent k represents the set of
all k-length sequences of members of that set. For example, _2_5 is the set
of all five~-bit sequences. If S and T are sets, the Cartesian product

S x T is the set of all ordered pairs (s, t) with s 1n S and t in T. The
weight w(b) of a vector b of binary values is its number of nonzero com-
ponents. A unit vector is a binary sequence ol weizht one. The ones
vector of length n is the sequence of n ones. If V is a set of vectors,
w(V), the weight of V, is the sum of the weights of the memiers of V.

If k is a natural number, then B(k) is the reverse binary representation

of k; i.e., B 1s the function sequencs surh that
n-1

k = Z 21131(k).
0
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A natural pumber ies a nonnegative integer. A number is dyadic _ii‘ it
is a power of two. A dyadic power of x is therefoie of the foim 121, for
some integer i. The symbols [rl and [ r] represent the amallest integer
not less than r and the integral part of r, respectively, for r a real
number. If r is an integer,

T F ey

ok

Ml o ol o dnnd W ke g

fr] =1z = r;
otherwise,
fri=1+x].
A functior f defined on a set S with vaiues in a set T is indicated by
f: S—T,

If each member of T is the image under f of some member of S, then 7 is
surjective. If each member of T is the image under f of at most one mem-
ber of S, then f is ective. The function f: S —T is bijective if it
is both injective andsurjective; this is indicated by writing

f: S€>T,

Becolean variables will be written in small Roman type, and they will
usually appear subscripted.

Galois variables may be elther Roman or Greek lower cace literals but
will be subscripted only as Greck latters umless otherwise specified.
These conventions permit a coordinate representation of a Galois varisble
x to be indicated by "x", a sequence of Boolean variables. Analogous
conventions will exist for Boolean and Galois function symbols and func-
tion segquences.

s AR oo L bt S

Let x be a sequence of length k and y be a sequence of length Zk.

The Boolean function u(x, y) is universal for x if each of the 22k
functions of x occur just once among the various parametrizations of u ﬁ
obtained by replacing y by a sequence of Boolean constar.s. The active
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yariables of u(x, y) are x, while its gelection variables are y. 4
universsl Galois function is a Galols function u(g, 1) such that each
function of £ appears exactly once among the parametrizations of u with

respect to M,

A combinatorial logic network is associated with each Boolean
forrula. Within a given technological framework, a Boolean formula tends
to determine tne networi associated with it. The same is true of Galois
formulas. A logic network will be said tc implement, generzte, or perform
the function represented by the associated formula.

& logic net represents a formula as a graph, primitives of the
formula being indicated by nodes of the graph. Such a graph is directe
(ir tbe direction of signal flow) and is acyclic (i.e., loop-free). The
graph has imputs represanti.ng the variables of the formula and an output
representing the value of the formula. The number of levels of a graph
is the length of the longest path in the graph, exclusive of imput nodes,
and is independent o>f the directicn of leveling.

Figure 1 iilustrates symbols which will consistently represent NOT
gates, EXCLUSIVE OEK gates, k-inmput AND gates and k-input OR gates in
drawings throughout this repo-t.

- ) T I

NOT EXCLUSIVE OR AND OR

Figure 1. Representation of the NOT Gate, EXCLUSIVE OR Gate,
k-Imput AND Gate, and k-Imput OR Gate
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SECTION IIX
UNIVERSAL FUNCTION THECRY
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In this section the concept of & universal function is defined and
developed in the full generality of finite relational structures. The
interrelationships of universal functions are expiored, and they are shown

3
3
3
3
il
3

to be universal elements of suitably defined functors.

In the years preceding 1968, gcverrmment-supported research investi-
gated network optimization and fault-detection and correction for a

e b L1 ) N

variety of formulations of Boolean circuitry whose function was determined
by external control. This was an effort to anticipete the most important
challenge of the future LSI technology to legic design. Such a technology

b

promised vastly reduced marginal cost for circuit complexity with greaily
increased initial cost for a circuit design. The wltimate answer to the
new cost orientation was the uaiversal module—the network capable of

generating an arbitrary function of a fixed set of inputs. Today's read-

2
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only memory (ROM) technology owes much itc the pioneering support of this

research by Air Force Cambridge Research Labtoratories.

Through these years the only Boolean function actually investigated
in this research activity was that of the selected Shannon decompositicn,
though the Reed decomposition was known. This work culminated in 1967
with the development of the most efficient means of generating the se-

EYTOW TN IR ITY PPN

lected Shannon éecomposition in [2].

The first systematic investigation of the theory of universal Ecolean
functions was published in [3]. There it was established that the Reed
and Shannon decompositions were just two of the 22" gistinct universal

TR e FE s e e e i e ety

functions for n Bnolean variables. The following yesr, beased on this
work, category theory shed new light on the concept of universal Boolean
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& functions and hinted at their extension to other mathematical disciplines
([4]). In 1970, under the ccntinuing support of AFCRL, tae new approach
3 to logic design utilizing Galois theory was investigated, and a theory
of universal Galois functions was developed paralleling those of Boclean
algebra. 1t will now be seen that all of these results arise from the
finiteness of a mathematical structure. The theory of universal func-

tions is developed and the interrelationships of universal functicns are
derived in the full generality of finite mathematical structures. Since,
by its nature, every approach to logic design must be based on a complete
finite mathematical structure, the theory presented here will bhe imme-

: diately appliceble i~ every possible approach to logic design, past and

3 future.
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In this report relational structures of interest are the two-element
Boclean algebra and dyadic Galois fields over GF(2). However, the results
proven here apply to all serious conter?ers for the role of supplying the

TIIIE
o G i

{ mathematical foundation for logic design. Furthermore, they may be gener-
alized to infinite structurez in varicus ways. Concepts and terminology
B from category theory are elementzry and may be found in the appendix.

1 Throughout this section, R is assumed to be a fixed relational

= structure with finite universe U of cardinality c. (A "relational

E ¢ structure" is a mathematical structure with distinguished functions and
— relations over a universe. Relational structures are a basic concept of
- model theory and are discussed in texts such as [ 6] and {7}.) A function
u:Uk+d-—> U is universal for k variables (with respect to R) if and only

if, for every function f:Uk—> U, there exists a € U"3 such thet

£f(x) = u(x, a).

Universal functions have played a quiet but important role in logic
design theory. The Shannon or minterm decompcsition (disjunctive normal

form) for variables Xor Xqs eeey X 1»
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was the universal function that immedistely established the theoretical
adequacy of Boolean algebra for combinational logic design and at the same
time offered a canonical form for Boolean functions. The maxterm de-
composition (conjunctive normal form) is another formulation of ths same
universal function, while the Reed or ring decomposition,

0PN @yx @ yzgx @ o @ ypuXge e X s (2-2)

results in an :ntirely distinct universal function for k variables. Re-
formulation ot (2-1) and (2~2) in terms of various logicali primitives in
accord with shifting technology has suppllied the foundaticn both for the
initial approsch to the design problem and for various optimization
algoritims, such as the Quine-McCluskey method of prime implica.ts. In
addition, universal Boolean functions served as a foundation for the
theory of Boolean function decomposition and led the way in various tach-
niques of function composition, such as "treeing" identical modules to
obtain more ctcmplex or more reliable modules. With a rapidly increasing
emphasis on building the maximum of flexibility into a minimum of module
types, universal functions begin to assume a greater potential for direct
application.

The difference in the form of (2-1) and (2-2) suggests that differ-
ing universal functions may be preferred in different technologies [ 3].
This raises the question of the existence of other universal funcgions, not
only in Boolean algebra but in finite field theory. This section develops
the theory of universal functions in the general context of finite relation-
al structures, indicates their interrelationship and shows that they are
the universal elements of appropriately defined functors.
Proposition 2,1. If u:U¥*d_—5 y i5 universal for k variables, then d

k
equals ¢ ., X

Proof. There are exactly ¢® k-variable functions defined on U, and

there are cd parametrizations of the final @ variables.[]
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When U is the two-element Boolean algebra B, ¢ is two, und if U is

G,, then ¢ is 2, Thus,

Coroliary 2.2. If n is universal for k Boolean variables, then u has 2k
selection variables [], and

Corollary 2.3. If u is universal for k variables over GF(2"), then u
possesses 25 selection variables.[]

The following theorem can be viewed as a generalization of the
Ptreeing" technique in logic design.

Theorem 2.4. Let |x| = 3, |3l = k and 129 = ¢, 1= o,..., 31
If u is universal for j variables and v 19 miveraal for k variables,
then u(x, v(y, (o)),..., v(y, = (cd 1))) is universal for (j + k) vari-
ables x, y.

B LT L Lttt it o A UL o2 o iy s gt E s

Proof. Take f a (J + k)-argument fumction. For each k-length sequence &
of members of U, define f,(x) as the j-argument function f(x, 8). By the
universality of u, for each k-length sequence &, there exists a unique
o- -length sequence b, depending on a, such that f (;) = u(x, b). Define
205 —» 1°J such that

2, = 1(x, £(@)) (2-3)

for a ¢ IIk By the universality of v, for each i ¢ cj, there exists a
unigue ck-lengbh sequence 29‘_)_ such that g;(3) = v(3, (i)) From (2-3)
it follows that

£(x, 3} = uw(z, (@, (O)): ooy V(3 P__:Il). (2-4)

) -
The uniqueness of the parametrization (2(0‘), ceey E(c 1)) is guaranteed
uniqueness specifications for the -miversality of u and v. This can be
seen by supposing that
0 od - 1
£(x, 3) = 0@ v 20, eue, vz 0 T 1)) (2-5)
and replacing y by b in (2-4) and (2-5) for all possible b ¢ _gk. a

S

Figure 2 and Figure 3 iliustrate successive applications of Theorem
2.4 to obtain a universal module for ten Boolean varia.les. In Figure 2
both u ard v are universal for two Boolean variables. That 1is,

’E": 'Il = 2, and ’i(_.j;).i=4: i=0, 1,2 3.

-12-




% Thus, the tree in Figure 2 is universal for four Boolean variables. Figure 3
EE tekes the function generated by the entire tree of Figure 2 and . anc takes v i
_ %ﬁ as universal for y. Here, :
: B
E E |x| = 4 and |y] = 6, wvhile :
& 28] =25 i=o, ..., 15. i
é
§ Note that here the v-modules of Figure 3 are regorded as universal for six ;
3 § Boolean variables although each has 2= function selection lines which are
g suppressed in the figure. 3
3 % 2, 2z, 5
E & |
- T
! i 25 ZA ij
| o
E = 2g 2 . i
£ 29 g 1
ek l

3 o

E v

:%: 1 I i
= E 3

E Z1Ic 11

§

g 13 %12
= B ]
E £ Yo .
g ¥y
& ] 1 3
-3 i-% 20, %15
= B Figure 2. A Universal Tree for Four Variables with
E % Two-Variable Universal Noces
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Treeing to Outain a Universal Module for Ten Variables
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The next theorem is a generalizationr of the basic lemme in Boolean
function decomposition theory. '

Theorem 2.5. The function u 1is universal for k variables if and only
if for each natural number j and each (: + j)-variable function f, there
exists a unique function sequence g:Uj—NI"k such that

£(x, 3) = ulx, gy).

Proof., Suppose u is universal for k variables.” The theore;n is_provén by
induction on J. The case j equal zero restates the definiiion of uni-
versality of u, so assume the theorem holds for j equai m, m > O, and take
fa (k+m+ 1l)-variable function. Let lxl = k. For each member a of U,
define f (:_t, y) = £(x, y, &); by the induction hypothesis, there exists

a unique function sequence g : Um""Uck such that £ (_, Y =ulx g (y))
This determines the (m + 1)-argument function sequence g such that, for
each a ¢ U, g(y, a) = ga(y), for which f(x, I T Y = u(x, &y, ym)). The
uniqueness of g is immediate, completing the induction. The converse is
seen by taking j equal zero.U

Reinterpreting the v-modules of Figure 3, Theorem 2.5 implies that for
each ten-variable Boolean function f, there exist a unique sequence of six-
variable functions (v, Vs eees 715) such that the network of the figure
generates f. In general, if j is zero (i.e., if ¥ is the empty sequence) ,
g(y) 1is a sequence of constants and Theorem 2.5 states that a universal
function has a unique parametrization resulting in f.

The 'follouing theorem establishes the relationship that exists among
universal functions for the same mmber of variables and, with Theorem 2.4,
enables one to obtain all universal functions from a single function
universal for one variable.

Theorem 2.6. Let u be universal for k variables. The function v is a

universal for k variables if and only if for some function sequence
g:U°k<—>U°l.‘,

ViXy Z) = u(l‘) _g_(Z))°
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Proof. Suppose v is uriversal for k variables. By Theorem 2.5, there
exist function sequencec g and h, each mapping Uck into itself, such that
v(x, 3) = u(x, g(z)) and u(x, z) = v(x, hiz)). From this it follows that
u(x,z) = u(x, (; h)(z)). By Proposition 2.1 and the uniqueness of (g h),
this implies that (§ h) is the identity on Uck, whence g is invertible &.d

therefore a permatation of ek,
k
Suppose now that g is a permutation of ¢ and v(x, ) = u(x, g(3).

If £ is any k-variable function on U, there exists a unique sequence a
such that £(x) = u(x, a) = v(x, _g_-l(g)) . Any parametrization of v other
than g-l(g) resulting in the same function f would violate the uniqueness
of th; parametrization a for u, so v is universal for k variables as
required.(]

k
Corollary 2.7. There are exactly (c® )1 universal functions for k
Y

veriables over a c-element relational structure. ]

Corollary 2.8. There are exactly (22k)l universal functions for k Boolean
variables. [J

Corollary 2.9. There are exactly (2n2kn)l uniiersal functions for k
variables over GF(2").0

Certain categories are now defined. The first is the category §
whose objects are the Cartesian products Uk, k=0,1, ..., with
hc.m(Uk, Uj) consisting of function sequences _g:Uk—a Uj. Next, consider
the sequence of categories x®(m =1, 2, ...) whose objects F_ . are the
sets of (m + k)-argument functions, k =0, 1, ... . The morphis;m classes
hon(F, s Fy 5) of X®ars the sets of transforms T mapping Fp,; into B o

Let m be a fixed positive integer. There is a contravarient functor
J® fromE tox™ defined by:

Jm(Uk) =F o k= 0,1, ..., and for E:Uk—>Uj,Jm(_g_): Fm,j —> Fm,k

such that, for each member f of F o
3

I () = £(+, g(*)), §=0, 1, .eu .

=16~
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Theorem 2.10. The function » .s uvniversal for m variables if and only if
ve 3(US™) is a universe) siement of 2l

Prcof, Let u be universal for m variables. By Proposition 2.1,

ue Gm(Fm’cm). Theorer 2.6 guarantees that for each merber f of Jm(Uk)
there exists a unique function sequence h such that

£, ¥) = ulx, By) = (3@, 7).

m
Thus, u € ¥(U% ) is a universal element of J°.

Let u be any universal function for m variables, and let v ¢ :}m(Uk)
be a universal element. Then there sxists a unique function sequence
g:U"m—I*Uk guch that

u(x, y) = (3D, 3) = v(x, g3)),
and there exists a unigue function sequence h such that

v(x, 2) = u(x, b(z) = vz, g b(2) = v(x, b g(z) = (FTDIM(, 2,

In
where i is the identity function on 1% . This also implies that

u{x, y) = u(x, h g(y)), from which it follows that h g and g h are both
the identity on Uc®. HKence, h is s permutation of U™ and s by Theorem 2.4,
v is a universal functicn.[d

Figure 4 illustrates the activity of a universal Boolean function as
a universal element.

-17-
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u Is Given. Is Determinzg.
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e c. The SuitabledTranslator d. £(xy X5 Xp Jp» ¥;) 88
Is Found. Obtained from u. :
Figure 4. Use of a Universal Bovlean Function as a
Universal Element (Sheet 1 of 2)
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SECTION III
GALOIS LATTICE-LIKE OPERATIONS

The dyadic Galois fields GF(2") with Gelois addition and Galois
multiplication can be regarded as generalizations of the 1wo-element
Boolean ring, the field with primitives EXCLUSIVE OR and AND. Galois
addition and Galois multiplication are the Galois analogues of Boolean
EXCLUSIVE OR and AND, respectively. One question which presents itself
is: are there natural Galois analogues of other Boolean p.imitives? In
particular, t are the Galois analogues of the Boolean lattice oper-
ations: AND, OR, NOT? Answers to this question could offer competing
frameworks for logic design in an MSI/LSI envirorment and Gaiois struc-
tures whose algebra is closer to that of the traditional Boolean approach.
This section offers sets of lattice-like Galois operations, including one
cet which gives a true lattice.

The following is a 1list of basic identities for the lattice oper-
ations of Boolear algebra, with 'v' the disjunciion operator, !'A! the
conjunction operator and overlining the inversion operatcr. As a set of
axioms, the list is complete but redundant.

(a) ()
0=1 1=0 (3-1)
xA0=0 xvi=1 (3-2)
xAl=x xvO0=x (3-3)
XAX=0 xvx=1 (3-4)
x=x (3-5)
= (3-6)
: (3-7)
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(a) (b)

XAYJ=FAX XVy=yVvx (3-8)
xA(yAaz)=(xAF) Az xviyvaz)sxvy)vse (5-9)
xAlyva)=(xay)vixaz) xv(gaz)=(xvy A (xvz) (3-10)

The first approach to defining a Galois AND, Galois OR and Galois NOT
is as follows:

g AM=em, (3-11)
g v =g +T+EN, (3-12)
€ =¢. (3-13)

In this case, all the identities above hold for GF(2") except for (3-4),
(3-6) and (3-10). Thus, while under these operations the Galois field has
many of the features of a lattice, it is not a lattice. The failure here
seems to be rooted in the fact that Galois NOT is uninterpretable as a
complementary set (3-4) and that Galois AND and OR are not true reducing
and collecting operators, as indicated by the failure of the idempotency
laws (3-6) and DeMorgan's laws (3-~10). Enough of the lattice structure
survives to make meaningful use of some lattice intuition in utilizing
(3-11), (3-12), and (3-13). Implementation of (3-13) for additivc codes
is just bitwise inversion, as illustrated in Figure 5. Figure 6 displays
the Galois OR gate for (3-12).

=

Figure 5. A Galois NOT Gate for GF(2%)
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Note that (3-12) mixes first and second order terms. One might hold
this feature responsible for some of the failures above and try to elim-
nate them by defining

1
£V =g+ 7 +ED. (3-14)

This definition salvages (3-6b) and (3-10a) but only at the expense of
(3-2%), (3-7) and (3-9a).

Part of the purpose in seeing how closely one can epproximate lattice
operations in Galois structures lies in the desirability of building wp
Galois functions from specific conditions much as Boolean functions can
be generated by collecting minterms on which the function is nonzero.
Characteristic functions provide a foundation for such developmzut. The
characteristic function for the sequence o of Galois values is the func-
tion xd(g_), defined

¥ () = (3-15)

Like all other Galois functions, characteristic functions can be written
as polynomials., Here,

lgli}[ ( ) n*

_ 1+ (€, +a ]

From (3-15), it is clear that every Galois function of one Galois variable
€ can be written

2e) = L 2y )

Q'€Gn




and that every Galois function f(£) of the sequence of k variables € can
be written

2e) = ) Tk, le).
ey
A true lattice structure can be defined on GF(2") which makes char-
acteristlc functions the atoms of a distributive Galois lattice. Let C be

the code for GF(Zn), and define the set transform S:GF(2") —» n such that,
for each o ¢ GF(2n),

S(e) = 1 Cio = 1}

Now define

€= S'l(_r.l - s(g)), (3-16)
3 gv1=ST(sgu sy, and (3-17)
g AT =SN(s N sn). (3-18)

The structure <GF(2n )3 v, A, T > is a distributive lattice, with features
corresponding closely to the two-value Boolean lattice structure. In
particular, the formula

i Bt G A B

£(e) = ¥, 2, (6)-

ot Gn

b
(LA

for k Galois variables £ is the Galois analogue of.

*

n
f(Z) =V Yiui(z)

¥ "‘h IHL‘\ ‘\I‘H«‘ i

o

the selected minterm formula for k Boclean variables x.
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As a lattice, the Galois operations (3-16), (3-17) and (3-18) are
the most convenient from a mathematical point of view. Unfortunately,
they would not seem to be good choices for an MSI/LSI technology because
their implementations grow linearly with n instead of n°, resulting in
poor gate-to-pin ratics.
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SECTION IV
SPECIAL NETWORKS

This section discusses two techniques utilizing networks related to
Calois logic design. Each offers a specific network, depending both on
the power of the Galols field and the selected code. The first is a
method of enhancing a Galois multiplication gate to perform binary ad-
dition, while the second offers an improved versior of the linear Galois
gate.

Lety be a generator of GF(2%), and let L be the logarithmic code
L) = (1,1, ..., 1),
i *
.I.‘(Y )=§(i), ien,

where }_B(i) is the reverse blinary expansion of i. Galois multiplication
has the property that
O0-x = x.0 = 0, for all x, and

i i+3) mod n* *
vvj=y( 3) ,1, 36 ot

Thus, a Galois multiplication gate for code L performs the function
AQ, B(1)) = A(B(2), 1), and

A(B(1), B(3)) = B(i + i mod n*),4, j € n"

?

"
i ) b 'k
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where "1" denotes the ones sequence and A is an n-bit adder with end-
around carry for integers written in (reverse) binary notation.

Now let C be any code for GF(2"), and define translators

1 1

S=CL andI=LC . (4~1)

If M is the Boolean function sequence performed by a multiplication gate
for C, then

B(i+ §modn) = Ly mod n*) = p g(y S mod n%)

T Mo, 49 = T M8 LiyD), 5 14

"
]
e
v

B{1), SB(3)), 1, j € n’.

Figure 7 11lustrates the general nevwori. suggested by the equacvion for a
four-bit adder with end-around carry.

B(1) S
| M T —':B ®B(1+ j mod n')
B/ s

Figure 7. Use of a Galois Multiplicsiion Gate for an
Adder with End-Around Carry
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An example of this method of smplementing four-bit adder with end-
around carry is now developed with code C given in Table I. In this case
(4-1) is satisfied by the logic networks of Figures 8 and 9, while a
Galois multiplication gate performing M for code C is illustrated in
Figure 10. Other choices of codes may result in simplifications of net-
works for S, T and/or M.

Table I. A Code C For GF(2%)

2 3 6
x 0 1 Y Y v vl' v5 Y
x 0000 1111 1000 0100 1101 | 0010 1010 | 1110
7 8 9 10 1 12 13
x Y v N Y Y Y Y vll‘

E]

0011 0001 1011 0101 0110 o1l 1100 { 1001

The second technique to be mentioned here is an improved version of
tiue Galois linear gate discussed ané utilized i~ [5]. An iw ~cmentation
of the Galois linear function (y + zx) was offered there consisting of a
Galois multiplication gate and Galois addition gate. It was natural to
expect that direct implementation of the linear function would result in
some internal saving. It is now seen that the internal hardware is re-
duced slightly, to a bit more than that of a Galois multiplication gate-
in the forthright manner indicated in Figures 10 and 11 for code G given
in Table II.

Table II. Geometric Code G for GF(ZI*)

2 3 ’ 6
x 0 1 Y Y Y YA YS Y
Gx 0000 1111 1110 1101 1000 0111 1001 | 0100
11 12 13 14
x v7 Y8 Y9 Ylo Y Y v Y
Gx 1100 1011 0010 0110 1010 0001 0011 | 0101

RETTVR
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Figure 8. Translator S for Code C

gy —
1
Figure 9. Translator T for Code C
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Figure 11. An Improved Linear Module for GF(Z"')




A Rt S SRR A6 5> E b N Cos i R ot St i mit -l St < > Sod -;*#-\-:%

= i ey SRS T 4, S g VRS TS e R T r b N D AT e TWEE S TR PIARTS S e A5 _7?%5 =

It is evident that the hardware saving from this technique grows at
most linearly with the power n of the field while the complexity of the
~
Galois multiplication gate increases with n®., Thus, one cannot expect
E: significant proportional savings in hardware for large values of n,
?Z; though switching speed may be sigrificantly enhanced for any value of n
g by saving a level of hardwere. Nevertheless, in view of the minimal
= difference in complexity between the Galois multiplice tion gate and its
. erliancement to a linear gate, it seems unlikely any further improvements
% will be found. Thus, for additive czocdes, linear gates of this type may
g be regarded as optimal, given the optimality of the Galois multiplication
g gate utilized. Another coroliary to this technigue is the fact that,
i’é due to their minimal difference in gate count, the choice between the
‘ % plus-times system of [5] and the linear esystem must be made on the basis
é of the plus-times requirement of two primitive gates, each with 3n piwus,
§— + ared to the single An-pin primitive gate required for the lineer
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SECTION V

GENERALIZED LINEAR NETWORKS 2

This section considers a generalization of the linear module and its
usge in hardware reduction. A linear function of dimension d is a Galois
function of tha form

Ng€o + MEq + oo + Ng_fa_2 * Ng1e (5-1)

A general linear function is a linear function of unspecified dimension.
Used without dimensional specification, the term 'linear fumction' is
reserved for the linear function of dimension two. A ronfactor cascade
of linear modules is a cascade of linear modules in which the output of
each linear module is the nonfactor imput of its successor.

Proposition 5.1. A linear function of dimension d is generated by a non-
factor cascade of d linear modules. [

Figure 12 illustrates the method of generating the d-dimensionsal
linear function by means of a cascade of d linear modules.

A choice set of imputs to a d-dimensional linear functicn (5-1) is
any subset S of d inmputs such that for each i (i =0, ..., d - 2) either
E; or My is a member of S. Let N be a network of general linear modules
without internal fanout. The externsl imputs of N are those module-imputs
which do not arise from previous levels. The network N is called immediate
if every general linear module in N has a cholice set of external inputs.

In [ 5] the following theorem was proven establishing the function of
2 network of linear modules to be largely inderendent cf its geometry.
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Figure 12, The Nonfactor Lineer Cascade of Dimension Seven

Theorem 5.2. If N is a (k - 1)-node immediate network in the linear
system, there exists an appropriate sequence of selection variables and
powers of £ to be introduced at the external inputs of N which enables N

tc perform a genersl polynomial of length k. []

Now a similar theorem is proven for networks of general linear

modules. Define the dimension of a network of general linear modules as

the sum of the dimensions of its modules.

Theorem 5.3. Let N be a (k-1)-dimensional immediate network of general
linear modules. There exists an appropriate sequence of selection
variables and powsrs of € to be introduced at the external inputs of N
which enables N to perform a general polynomiel of length k.

Proof. By Proposition 5.1, each general linear module of dimension d in

N may be replaced by a cascade of d linear modules. If N' is the network
resulting from N by replacing each general linear module by such a cascade,
then the total number of linear modules in N' is just (k - 1), and N is a

-36-




(k ~ 1)~ncde immediate network of linear modules. By Theorem 5.2, there
is an appropriate sequence of selection variables and powers of € which
can be introduced at the external inputs of N' vwhich enables N' to perform
a goneral polynomial of length k. The same sequence of inputs applied to
corresponding points of N then establishes the theorem. [J

The effect of the above theorem is to suggest minimally redundant,
fault-tolerant arrays similar to those of [5], utilizing d-dimensional
linear modulee, This permits the use of arbitrarily complex cells in the
array without a corresponding increase in field power. If on the other
hand one wishes to reduce hardware, Figure 13 illustrates a means of re-
ducing the d-dimensional linear gate tc a single linear module, 1In
general, hardware required for a d-dimensional linear gate can be reduced
by a factor of approximately | d/k] at the cost of a [d/kl-increase in
switching time.

A similar network, consisting of a single linear module and a unit
delay, car be used to generate a general polynomial of length k in (k - 2)
clock pulses, as in Figure 14.

A peneral polynomial module of length k, together with a linear module
and a t delay, generates a general polynomial of length tk in t- 1 clock
pulses. For

(1) _
= Monpyer «oos Man(3-1) K1)

"1 T Moy toeee Hligea® s

- tk-1
£S5 Mgt e # Ty €

Thus, for t = |'2n/k'], the sequential network of Figure 15 is universal.
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Figure 13. Sequential Implementation of a General Linear Gate
[
Me3-1
fy k-1
3 D1 T Mg+ oeee + Mt
Ty = o 1&
Figure 14. Sequential Implementation of a General Polynomial
from a Linear Module
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Figure 15. Sequential Implementation of a General Polynomial from a
Linear Module and a General Polynomial of Fractional Length
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SECTION VI

FUTURE PLANS

Research in Galois logic design has, till the present, been primarily
concerned with various primitive gates and their synthesis. It is possible
now to interrelate choice of code and primitive complexity. Varieties of
primitive sets have been considered, such as the plus-times rystem, the
plus-times hybrid [5], the linear system, Galeris pseudolattice systems
(Section Three), general linear primitives (Section Five), etc. Further-
more,, methods of arriving at Galois functions satisfying Boolean truth
tables are known ([5]). To make Galois design practical, two major areas
remain to be developed.

First, it is necessary to examine the effect of code choice on the
complexity of the Galois polynomial. Similarly, when the number of Boolean
functions to be developed on a set of Boolean arguments is less than the
power of the overall Galois field, how does the determination of don't-
care conditions affect the Galois polynomial? Heuristic answers to these
questions may be obtained by meens of computer assistance. It is hoped
that they will point in the direction of simpler less expensive Galois
networks ty means of systematic, judicious selection of code and don't-

care resolutions.

Second, once the Galsia polynomial is available, how is it simplified
to reduce gate-count? In principal, a circuit may require a very large
number of Galois gates, even for relatively small field power. It is
essentiel to reduce this mumber by mears of factorization and nesting
techniques, So {er. research in Galois polynomials has concentrated on
deriving polynomiai rocts, due to the influence of coding theory. This
objeciive seems far less relevant to logic design in that it ignores
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function decomposition. It is rather clear that the power of function

decom. ‘sition algorithms must be brought to bear on the artifically in-
flated gate-counts of the initial Galois polynomial., It is anticipated
that this will be a major effort, but such algorithms are essential to
the establislment of the practicality of Galois logic design.
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: APPENDIX

Like set theory, category theory provides the vocabulary and basic

structure as a universe of discourse for whatever discipline has been

= placed in its setting. Unlike set theory, instead of studying the internal
3 f structure of individual objects, category theory focuses attention upon

13 the relations and functions existing between them.

TRV B PR P T Ty

3 3 Let X be a class C of objects together with two functions, hom and - ,
34 satisfying the following conditions.

Cl. For each pair of objects X, Y in C, hom (X, ¥) is a family of
elements, called morphisms.

C2. For each triple of objects X, Y, Z in C, if f is a member of
hom (X, Y) and g is a member of hom (Y, Z) then g°f is a member
of hom (X, 7‘.

If £ is a member of hom (X, Y), then f is said to have domain X and
codomain Y, all of which is indicated by writing "f:X—> I". Whenever it
exists, g-f is called the composite of g with f.

X = (C, hom, +) will be called a category if, in addition, the fol-
lowing two axioms hold.

C3. The operation - is associative; that is, for W, X, ¥, Z in C,
if f:W—>X, g:X —Y and h:Y—> 2, then h.(g.f) = (h-g)-f.

C4. For each object X in C, there is a two-sided identity lX with
respect to the composition operation; that is, there exists a
morphism 1X:X —>» X gach that, for each Y and each £:Y —>X and
g:X —1, 1x°f = f and g-lX = g
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A functor J from category X = (C, hom, +) to category X! =
(C', hom', +) has the following properties:

Fl. & is a function from C to C!;
F2a. for each pair of objects X, Y in C, if f:X—> Y, then
F(£): F(X)— 3N, or
F2b. for each pair of objects X, Y in C, if f:X —> Y, then
3(): ) — F(X);
F3a. for each pair of morphisms f, g of X for which g.f is
defined, J(g-f) = ¥(g)-F(f), or
F3b. for each pair of morphisms f, g of X for which g:f is
defined, &(g-f) = 3 (2)-F(g);

F4. for each object X in C, lx = lﬂ(X)'

4 The functor is covariant if it satisfies (F2a) and (F3a), contravariant
= | if it satisfies (F2b) and (F3b). (See Figures 16 and 17.)

X o - 5(X) X o - 5(X)
T f o— = 5(f) 1 f e — J(f)
: Y — — B(Y) Y e - )
a. Covariant Functers b. Contravariant Functors .

Figure 16. Typicel Behsvior of Functors
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Figure 17. Homnmorphic Behavior of a Contravariant Functor ;
The last concept to be introduced is that of a universal element.
A universal element of a contravariant functor & on a category Xis an ?
object R and an element u of J (R) with the property that, for each object
X of X and each member v of F(X), there is exactly one morphism h:X—» R :
such that ’

J (b)u = v.

(See Figure 18.) i
i




v=3(h )u
Vv

Figure 18, Universal Element u ¢ F(R) for a Contravariant Functor
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